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Figure 1. Schematic illustration of a suspended flake (center) and the opportunities this material system offers in terms of
electrical, optical, mechanical and thermal studies.

Table 1. Summary of suspended TMD systems prepared from exfoliated material.

Material Thickness Substrate Hole size Transfer method Reference

MoS2 1 layer SiO2/Si 5 µm PMMA [49]
1 layer Si3N4 1.2 µm PMMA [50]
1 layer Si 2 or 5 µm PMMA [51]
1 layer SiO2/Si 550 nm PMMA [52]
1, 2 layers Au 4 µm PMMA [43]
1–10 layers Au/Ti 4 µm [53]

WSe2 1 layer SiO2/Si 2−5 µm [54]
1–3 layers SiO2/Si 1.5 µm [55]
4, 6 layers Si3N4 5 µm PMMA [56]
5, 6, 12, 14 layers SiO2/Si 1.55 or 2.6 µm Dry transfer [57]

WS2 13–107 nm Si 10 µm Dry transfer [58]
MoSe2 1–5, 7, 70 layers Au 15 µm Dry transfer This work

3–9 layers, bulk Au 15 µm Dry transfer [15]
1, 2 layers Au 2.5 µm PMMA [43]
5–80 nm Si 10 µm Dry transfer [59]
45–140 nm Si 22× 22 µm Dry transfer [60]

Impressive material systems have been fabricated with suspended graphene flakes [17–19], suspended
transition metal dichalcogenides (TMDs) [20, 21] and suspended Van der Waals heterostructures
[22, 23], where exfoliated flakes are typically suspended over a few µm. For several studies and
applications—especially those focusing on optical, optoelectronic, thermal and mechanical properties—a
larger suspended area is desirable, or, in some cases, crucial. We note that large-area suspended material
systems can be prepared using crystals grown by chemical vapor deposition, rather than exfoliated flakes.
Such systems are typically limited to monolayers. Exfoliated flakes do not suffer this limitation. However they
are often suspended over a well or trench, rather than over a hole that goes completely through the substrate.
Furthermore, the suspended flakes should ideally be monocrystalline, free of residues, free of strain, relatively
easy to fabricate, and durable. Here, we demonstrate the fabrication of such systems using polydimethyl-
siloxane (PDMS)-assisted dry transfer, based on the method described in [24], onto a carefully prepared
substrate with a 15 µm diameter hole with a full transmission window. We demonstrate the ability to
fabricate these material systems with flakes down to the monolayer. To the best of our knowledge, these are
the largest, suspended, TMDmonolayer flakes based on exfoliated material, that have been fabricated to date
(see table 1). Furthermore, with sufficiently high quality of exfoliated flakes, even larger suspended areas are
likely attainable with our method. We characterize the suspended flakes using a variety of techniques, and
perform experiments, where we obtain the optical absorption of MoSe2 flakes as a function of flake thickness.

2. Method

We fabricate free-standing TMD flakes by exfoliation onto a viscoelastic PDMS stamp, followed by
dry-transfer onto a substrate with a pre-fabricated hole. PDMS-assisted dry transfer is a commonly applied
method that involves no wet chemistry or capillary forces, thus leading to relatively clean surfaces. As a
substrate, we use commercial Si3N4 membranes with a single 15 µm hole (Norcada, NTPR005D-C15) and,
crucially, metalize their surface with titanium (5 nm) and gold (50 nm). Metal-coating the substrates prior to
transfer significantly enhances the transfer yield thanks to the strong adhesion between gold and chalcogen

2



J. Phys. Mater. 4 (2021) 046001 S Varghese et al

Figure 2. (a) Home-built transfer stage/probe station setup. (b) Scheme of the exfoliation method on PDMS. (c) Exfoliated flake
on PDMS in transmission microscopy. (d) Schematics of the stamping process. (e) Flake being released on Au-coated Si3N4 holey
chip, and (f) optical microscope image of completely transferred flake. Scale bars in (c)–(f) correspond to 50 µm.

atoms [25]. The exfoliation and transfer is based on the method of [26], while our home-built dry-transfer
setup, shown in figure 2(a), is a modified version based on the design from [24]. Below, we describe the
fabrication process in detail.

For exfoliation, we sandwich a flat piece of TMDmaterial between two strips of Scotch tape. The crystal
is thinned down and spread over an area of ~1× 2 cm2 by bringing the two tapes in contact a few times at
different, yet close, positions. We use both these strips as parent tapes, from which we produce ‘exfoliation
tapes’ by peeling the thin crystals with a fresh piece of Scotch tape. We immediately bring the ‘exfoliation
tapes’ in contact with a PDMS bed, placed on the edge of a fresh glass slide, as shown in figure 2(b). Rubbing
gently with a cotton swab typically ensures good contact between the crystals and PDMS, thus producing
larger flakes. Additionally, fast peeling of the exfoliation tapes increases the yield and area of thin flakes. We
perform the flake search under an optical microscope (see image in figure 2(c)) in both transmission and
reflection configurations to identify wrinkle-free, large and thickness-homogeneous flakes with sharp edges,
indicating high quality and single-crystalline nature. We select flakes with the desired thickness using
calibrated optical contrast measurements.

For the preparation of the PDMS stamp, we mix silicone elastomer curing agent and silicone elastomer
base (SYLGARD 184) in 1:10 wt% proportions. We stir the mixture and place it in a vacuum desiccator to
force the release of air bubbles until it appears transparent, which is a subtle step that we identified as crucial.
We then spread the mixture in a Petri dish in order to achieve a bubble-free, homogeneous ~1 mm thick
PDMS film with a smooth surface. The closed Petri dish is left drying for ~48 h in air and later sealed to
avoid dust and loss of stickiness. Finally, we cut the PDMS in appropriately sized pieces at the moment of use,
selecting PDMS from the center of the Petri dish, where it has the highest flatness.

For the deterministic, precise transfer of flakes, we use a home-built dry-transfer stage inspired by the
design of [24]. The most important improvements that we have implemented are the following. First, we
improved the mechanical stability of the imaging part of the stage by using a vertical support post with
increased mass, and by equipping the stage with motorized zoom and focus. Second, we included a vacuum
chuck that allows the gentle mounting and dismounting of substrates and samples, with integrated
temperature control. Third, we equipped the transfer stage with six degrees of freedom to align the flake with
respect to the target substrate (x, y, z, rotation θ, pitch α and roll ϕ), see figure 2(a). The tilt degrees of
freedom allow for precise control of the flake-substrate contact angle and the direction in which the flake will
be released, which is crucial for preparing suspended flakes. In addition, we use x′ and y′ stages at the base of
the setup that conveniently allow for sample inspection without loss of alignment between flake and
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Figure 7. EDX spectra of suspended (a) bilayer and (b) bulk MoSe2 flakes.

Figure 8. Raman spectra of (a) suspended and (b) supported MoSe2 flakes of different thicknesses taken at 532 nm excitation
wavelength. The solid lines are Lorentzian fits to the data. (c) Peak position of A1g mode across suspended MoSe2 flakes of 1–4
layers and bulk taken at 3 µW incident power at sample plane. The blue shaded area represents the suspended regions. The abrupt
increase in peak position for the monolayer sample corresponds to a transition from 1 to 3 layers along the scan direction.

and a MoSe2 flake with a thickness of ~50 nm. We find a decent ratio between Mo and Se, and relatively low
traces of other elements, in particular for the thicker flake. This shows that our fabrication technique leads to
suspended flakes with a very small amount of residues. We note that the bilayer sample shows a significant
amount of C contamination, which we ascribe to deposition from the environment during the>1 year
between sample preparation and performance of the EDX measurements. The thicker sample was
significantly more fresh, and shows very little carbon contamination.

We also characterize the suspended MoSe2 flakes by Raman scattering with a spectral resolution of
0.25 cm−1, in order to extract information about strain in the suspended flake. The relative shifts in peak
position of different Raman modes also provide information about the thickness of TMDs [36–38]. We use
the same setup that we used for the PL measurements, and study the occurrence of strain-induced changes in
the Raman spectra of our suspended and supported MoSe2 flakes. Figures 8(a) and (b) show the A1g mode
for MoSe2 flakes with thicknesses in the range 1–4 layers, and bulk. The results for supported and suspended
MoSe2 are very similar. For bulk MoSe2, the A1g peak position is located at 242 cm−1, in agreement with
previously reported values [39, 40]. The A1g mode shifts to lower frequency upon reducing the flake
thickness, and reaches a value of 239.7 cm−1 for monolayer MoSe2, also consistent with results in the
literature [30, 41]. The Raman measurements thus confirm the flake thicknesses we extracted from PL
measurements.

In order to investigate strain, we take Raman spectra at different sample positions, and extract the peak
position of the A1g mode of MoSe2 as a function of sample position (see figure 8(c)). We used very low
incident power (3 µW at the sample plane) to avoid temperature-induced Raman shifts. The frequency of the
A1g mode barely varies in the suspended region of the sample, while it fluctuates in the supported part of the
sample. These fluctuations are within, or very close to, the resolution limit of the spectrometer. Thus we
conclude that there are no signs of strain-induced shifts within the suspended region (blue-shaded area in
figure 8(c)).
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Figure 9. (a) Measured reflection R and transmission T values, together with the calculated absorption A= 1−R−T for
suspended MoSe2 flakes (532 nm) as a function of thickness. The solid lines and shaded regions represent a guide to the eye.
(b) Spectra in the visible and NIR range acquired for 1–5 layers suspended MoSe2 flakes.

3.2 Optical absorptionmeasurements
We now present optical absorption measurements for MoSe2, enabled by our exfoliated, few-layer, large-area,
suspended, single-crystalline, unstrained, clean flakes. We first perform a systematic study of the optical
absorption at 532 nm as a function of flake thickness in ambient conditions. We benefit from the fact that
our holey substrates are open windows, suitable for transmission measurements, where light only interacts
with the flake. We readily isolate the absorption of the flake by measuring the transmitted Ptrans and reflected
Prefl laser power, with respect to the incident power Pinc, using a calibrated power head (Thorlabs, S130 C)
and a pristine substrate as reference. We obtain the optical absorbance A of the suspended flake from the
following relation: A= 1−T−R= 1− Ptrans/Pinc − Prefl/Pinc. Figure 9(a) shows the resulting absorption A,
transmittance T and reflectance R values of the MoSe2 flakes as a function of number of layers. We observe
that the absorption increases with thickness and saturates quickly after 5 layers (5L). The material becomes
quite strongly reflective as the number of layers increases toward the bulk. We measured multiple samples in
the 1–3 layer regime, and obtained very reproducible R values of 2± 0.2% and 6± 0.2% for 1 and 2 layers,
respectively, showing minimal sample-to-sample variations. The reflectivity of TMDs has also been shown to
effectively reveal the thickness of each flake [42], which we find to increase from 2% to 20% from 1 to 5
layers. For the monolayer and bulk MoSe2, we obtained an absorption of 10± 3% and 33± 3%, respectively.
We note that for thicker flakes, internal reflections inside the material can occur, giving rise to
non-monotonous behavior of the optical properties as a function of thickness.

Available absorption values for mono- and few-layer TMDs in the literature are scarce and scattered. For
monolayer MoSe2 supported on SiO2/Si, an absorption of 23± 8% was estimated for a wavelength of 514 nm
[30]. Others have determined values of 5.6% and 9.7% for light at 633 nm for suspended monolayer and
bilayer MoSe2 [43], respectively. We note that most of the values found in the literature are obtained either
on supported flakes or flakes suspended over small holes with sizes comparable to the laser spot, or shallow,
well-like holes. In these cases, the absorption is calculated using an analysis that relies on knowledge of the
complex permittivities of materials in the sample, which introduces potential errors in the obtained
absorption values. In contrast, our large-area suspended flakes allow for more direct optical absorption
measurements that do not require knowledge of any dielectric properties of the substrate.

The second optical absorption experiment we perform is in the range from 500 to 1000 nm using a
commercial UV–Vis spectrometer (Hyperion 2000, Bruker). Figure 9(b) shows the absorption spectra in the
Vis to near-infrared range for 1–5 layers suspended MoSe2 flakes. Absorption and excitonic features for bulk
TMD crystals are well known since they have been studied since several decades [44, 45]. We find exciton
peaks around 800 nm (A-peak) and 700 nm (B-peak), in agreement with previous studies on MoSe2 [30, 46].
We also observe that the A-exciton peak exhibits a sudden blue-shift at the monolayer thickness, similar to
early findings in TMDs [47, 48]. The energy difference between the A and B peaks, which is an indication of
the strength of spin-orbit interaction, is ~220 meV for MoSe2, in agreement with the literature [31, 48]. This
shows that we can use our large-area, clean, suspended flakes for both quantitative absorption measurements
at a single wavelength, and spectrally resolved absorption measurements.

As a final demonstration of the usefulness of suspended crystals, we compare PL measurements on
supported and suspended regions of mono-, bi-, and trilayer MoSe2 flakes. We clearly observe that
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