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The timescale of electronic cooling is an important parameter controlling the performance of devices based
on quantum materials for optoelectronic, thermoelectric, and thermal management applications. In most con-
ventional materials, cooling proceeds via the emission of phonons, a process that can bottleneck the carrier
relaxation dynamics, thus degrading the device performance. Here we present the theory of near-field radiative
heat transfer that occurs when a two-dimensional electron system is coupled via the nonretarded Coulomb
interaction to a three-dimensional bulk that can behave as a very efficient electronic heat sink. We apply
our theory to study the cooling dynamics of surface states of three-dimensional topological insulators and of
graphene in proximity to small-gap bulk materials. The “Coulomb cooling” we introduce is alternative to the
conventional phonon-mediated cooling, can be very efficient, and can dominate the cooling dynamics under
certain circumstances. We show that this cooling mechanism can lead to a sub-picosecond timescale, significantly
faster than the cooling dynamics normally observed in Dirac materials.
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I. INTRODUCTION

Two-dimensional (2D) Dirac materials [1–4] have been
extensively studied in the past two decades for the diverse
range of intriguing properties they harbor, which could in turn
enable a wealth of novel practical applications [5–8]. This
is the case of graphene [1,9–11], arguably the most-studied
Dirac material, which continues to attract significant interest
because of its potential for electronic and optoelectronic appli-
cations [11]. However, graphene is just an instance of a broad
family of systems which includes the 2D surface states of
three-dimensional (3D) topological insulator [2,3,12]. Their
inverted bulk band structure allows states to localize at the sur-
face [5,13–16]. In ideal topological insulators, surface states
do not hybridize with bulk ones, and are topologically pro-
tected against any perturbation that preserves the symmetries
of the bulk [2,3,12].

Thanks to the coupling between kinetic momentum and
spin, the electronic surface states of a 3D topological insu-
lator present a physics potentially richer than graphene, and
promise application to a diverse range of fields, including
spintronics [6,7], optoelectronics, and photonics [17,18]. In
a recent experimental work [19], the cooling dynamics of
surface electrons of bismuth and antimony chalcogenides was
studied with pump-probe techniques. Surprisingly, electronic
heat relaxation faster than that of bulk carriers was observed.
The observed bulk and surface heat-decay rates differ by about
an order of magnitude, while the environment experienced
by their electrons is the same. Interestingly, a decay rate of
a few hundred femtoseconds was obtained under rather strong
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photoexcitation with a fluence on the order of 100 μJ/cm2. In
comparison, when graphene is excited with a similar fluence,
cooling is rather slow—several picoseconds—due to a phonon
bottleneck effect [20].

So why does the cooling of the electrons of surface states
of topological insulators occur so much faster than their bulk
counterpart or than graphene? In graphene, the cooling of
photoexcited electrons is ultimately limited by the emission of
intrinsic optical and acoustic phonons of the material [21–23]
or of the encapsulant or substrate [24–26]. In topological
insulators, cooling is also typically ascribed to phonon emis-
sion on a picosecond timescale [27]. Such phonon emission
mechanisms fail to account for the starkly different relaxation
dynamics of surface and bulk electrons of topological insu-
lators, unless one would postulate different electron-phonon
couplings or a reduced phase space for phonon emission by
surface states.

In this paper, we explore a different mechanism that does
not require fine-tuning material parameters, as it relies on
electronic systems exclusively. This alternative mechanism is
based on the notion that, contrary to electrons in conventional
graphene devices, the surface electrons of topological insu-
lators are in close proximity to a macroscopic bulk whose
particle-hole excitations can occur at energies comparable
to the (surface) thermal excitations. Thanks to the near-field
radiative coupling between surface and bulk, the latter can
act as a heat sink. Being macroscopic, the bulk can absorb
large amounts of heat and therefore efficiently cool down
the surface electrons. In this picture, heat is dissipated into
particle-hole excitations of the bulk via nonretarded Coulomb
interactions (see Fig. 1). Thus we term this mechanism
“Coulomb cooling.”
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FIG. 1. Schematics of Coulomb cooling of hot surface Dirac
fermions into bulk states. Dirac fermions have a constant Fermi ve-
locity vF, and they exhibit a hot thermal distribution characterized by
temperature and chemical potential Ts and μs, respectively. Similarly,
bulk states are described in terms of the effective mass m and band
gap 2�. The Fermi distribution of bulk states has chemical potential
μb (set to zero in later calculations) and temperature Tb < Ts.

We note that for atomic-scale heterogeneous systems with
massless electrons, such as graphene interfaced with other
2D materials, e.g., hexagonal boron nitride or WS2, or 3D
dielectric substrates, e.g., SiO2, different relaxation processes
have been described. This includes cooling of hot electrons
in graphene via polar [24] and hyperbolic [25,26] substrate
phonons, as well as thermionic emission [28] and direct
charge transfer [29]. In bare monolayer graphene suspended
over a hole, hot carrier cooling occurs via optical phonon
emission, followed by coupling to acoustic phonons [23].
These mechanisms thus involve either electron-phonon cou-
pling or charge transfer. The mechanism we describe here for
2D-3D surface-bulk TIs and graphene-TI systems does not
involve electron-phonon coupling nor charge transfer. Rather
it relies purely on Coulomb interaction, which so far has only
been explored in multilayer graphene [30].

In the remainder of the paper, we consider a system of 2D
massless Dirac fermions in proximity to a 3D gapped bulk.
The two are coupled only electrostatically via nonretarded
Coulomb interactions. This minimal model of a topological
insulator equivalently describes a graphene sheet in proximity
to a small-gap material. For both cases, using the kinetic
equation for surface electrons, we derive an expression for
their cooling rate. This is controlled by the convolution of
surface and bulk particle-hole excitation spectra. The higher
their overlap, the larger the amount of heat transferred per unit
time. We show that the cooling rate reaches a maximum for
surface temperatures close to half the bulk-band gap. This is
interpreted as a resonance between surface electronic transi-
tions, whose typical energy is the thermal one, and interband
particle-hole bulk excitations across the band gap. We find
a timescale of a few hundred femtoseconds for topological
insulators, and even a few tens of femtoseconds for graphene
on a small-bandgap semiconductor.

II. THE MODEL

We model both the surface states of the topological insu-
lator and the electrons in graphene as a gas of massless Dirac
fermions [1–3,9–12], i.e.,

Hs = h̄vF

∑
k,α,β

ψ̂
†
k,α,sk · σα,βψ̂k,β,s, (1)

where vF is the Fermi velocity and σ is a vector of Pauli
matrices. These act in the real spin space for topological
insulators, and in pseudospin (sublattice) space for graphene.
In Eq. (1), ψ̂

†
k,α,s (ψ̂k,α,s) creates (destroys) a surface parti-

cle of two-dimensional wave vector k (momentum h̄k) and
(pseudo)spin projection α. The band energy is ε

(s)
k,λ

= λh̄vF|k|,
where λ = + (λ = −) denotes the surface conduction (va-
lence) band. [The Hamiltonian (1) is obtained from the usual
one for topological insulators, which features a cross product
between momentum and spin operators [2], by redefining the
spin quantization axes.] Equation (1) is in form identical for
graphene and topological insulators. However, their electrons
exhibit different degeneracies Nf . While the surface states of
topological insulators are helical [2], thus yielding Nf = 1, in
graphene they feature a full spin-valley degeneracy [1]. Thus,
for graphene, the number of fermion flavors is Nf = 4.

We model the bulk as a two-band system confined into the
half-space z > 0 and described by the Hamiltonian

Hb =
∑
k,η

ε
(b)
k,η

ψ̂
†
k,η,bψ̂k,η,b. (2)

Here, ε
(b)
k,η

= η[� + h̄2|k|2/(2m)], where 2� is the bulk-band
gap and m is the bulk-band mass (assumed to be the same
for both valence and conduction bands), while ψ̂

†
k,η,b (ψ̂k,η,b)

creates (destroys) a bulk particle of three-dimensional wave
vector k = (k‖, kz ), in band η. Here, k‖ and kz are the wave
vectors parallel and perpendicular to the surface z = 0, η = +
denotes the conduction band, while η = − stands for the
valence band. For simplicity, we assume that bulk bands are
spherically symmetric and have no spin structure. These ap-
proximations do not affect the temperature dynamics on a
qualitative level. Assuming specular reflection at the inter-
face z = 0, the bulk eigenstates acquire the form of standing
waves: 	k,η,b(r, z) = √

2/V eik‖·r sin(kzz), where r is a vector
along the surface.

We assume that bulk and surface electrons are coupled
electrostatically by long-range instantaneous Coulomb inter-
actions [31], whose Hamiltonian is

Hsb = 1

2

∫ ∞

0
dz

∑
q

Vsb(q, z)n̂q,sn̂−q,b(z). (3)

Here, q is a two-dimensional wave vector along the surface of
the topological insulator, while n̂q,s and n̂−q,b(z) are the 2D-
Fourier transforms of the surface and bulk density operators.
The precise form of the interaction Vsb(q, z) is determined by
the solution of the associated Poisson (electrostatic) problem,
as we proceed to show.
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The interaction between surface and bulk electrons

In this section we derive the Coulomb interaction between
surface and bulk electrons. To do so, we consider the electro-
static problem of a single charge added to a conducting 2D
sheet (the surface states located at z = 0) placed on top of
the topological-insulator bulk which fills the half-space z > 0.
The half-space z < 0 is instead empty. The single charge is
added as a plane wave of wave vector q in the surface sheet.
In response to this added charge, induced bulk and surface
densities are generated. These are named nb(r, z) and ns(r),
respectively. The resulting Poisson equation (in Gaussian
units) is

∇ · [ε(z)∇φ(r, z)] = −4πe2n(r, z), (4)

where n(r, z) = nb(r, z)(z) + ns(r)δ(z) + e−iq·rδ(z) is the
total electron density, and ε(z) = εb(z) + εvac(−z) is the
dielectric function. Here, εb is the relative dielectric constant
of the topological insulator, which accounts for the screening
due to filled bands, while εvac = 1 [(z) is the Heaviside step
function]. The Fourier transform of Eq. (4) in the direction
parallel to the topological-insulator surface (or the graphene
sheet) yields

∂z[ε(z)∂zφq(z)] − q2ε(z)φq(z) = −4πe2nq(z), (5)

where nq(z) = nq,b(z)(z) + nq,sδ(z) + δ(z). Within linear
response, we write nq,s = χs(q, ω)φq(0), where χs(q, ω) is
the density-density response function (polarizability) of the
surface states, and

nq,b(z) =
∫ ∞

0
dz′χb(q, ω, z, z′)φq(z′) � χ̄b(q, ω)φq(z). (6)

Here, χb(q, ω, z, z′) � χ̄b(q, ω)δ(z − z′) is the density-
density response function [32] (polarizability) of bulk states
treated within a semilocal approximation. This approximation
allows us to reduce the integro-differential equation to a set
of differential ones. Behind it, there is the assumption that the
potential and induced charge density are sufficiently localized
in the z direction. The result in Eq. (9) is consistent with
our assumption and justifies a posteriori its use. We do not
need to introduce any approximation in the direction parallel
to the surface since we can simply take a Fourier transform
and reduce equations to algebraic ones. However, even doing
so we find [see below Eq. (10)] that the potential approaches
a constant at small q. This means that the potential decays
fast at large enough distances. Thus, the potential and induced
density are localized in space.

Equations of this section contain the response of the doped
bulk, embodied by χb(q, ω, z, z′) and χ̄b(q, ω), for complete-
ness. However, we leave this function unspecified since, as we
show below, it plays no role in the undoped regime when the
bulk thermal energy (kBTb) is much smaller than the bulk-band
gap (2�). Using these expressions, the Poisson Eq. (5) can be
split into the two half-spaces as

{
εb

(
∂2

z − q2
)
φq(z) = −4πe2χ̄b(q, ω)φq(z), if z > 0,(

∂2
z − q2

)
φq(z) = 0, if z < 0.

(7)

The boundary conditions, at the surface z = 0 and at z →
±∞, are φq(0+) = φq(0−), φq(z → ±∞) = 0, and

εb∂zφq(z)|z→0+ − ∂zφq(z)|z→0− = −4πe2(nq,s + 1). (8)

Introducing the bulk Thomas-Fermi wave vector [32]
q2

TF(q, ω) = −4πe2χ̄b(q, ω)/εb, the solution of Eqs. (7) with
the boundary conditions above is{

φq(z) = φ̄qe−
√

q2+q2
TF (q,ω)z, if z > 0,

φq(z) = φ̄qeqz, if z < 0.
(9)

Equation (9) shows that both the potential and the induced
density (which is linearly related to the potential) are very
localized in the z direction. This result is consistent with our
initial semilocal assumption and serves as an a posteriori
justification of its use. Using Eq. (8), we get

φ̄q = 4πe2

ε

√
q2 + q2

TF(q, ω) + q − 4πe2χs(q, ω)
. (10)

In the limit of zero frequency and small wave vectors,
χs(q, ω) becomes the densities of states of surface electrons.
Equation (9) is also applicable to the situation in which a
graphene layer is separated by a layer of vacuum (or air)
of thickness d from the topological insulator surface. The
interaction between electrons in the two systems is therefore
weighted with the exponential e−qd .

III. THE COOLING RATE—GENERAL THEORY

We consider the kinetic equation for electrons at the surface
of the topological insulator, which interact with those in the
bulk via Coulomb interactions. The surface and bulk electrons
are described by the Fermi distribution functions f (s)

k,λ
and f (b)

k̃,η

at the temperatures Ts and Tb and chemical potentials μs and
μb, respectively. As in Sec. II, k and k̃ are their two- and three-
dimensional wave vectors, respectively. We recall that λ = ±1
is used to denote the two surface bands (together forming a
Dirac cone), while η = ±1 is used for the bulk conduction
and valence bands. For the calculation of the cooling time, we
assume that no driving field is present and that material pa-
rameters (including temperatures and chemical potentials) are
isotropic. However, since the two populations are at different
uniform chemical potentials and temperatures, we can study
the time evolution of their distribution functions. The kinetic
equation satisfied by f (s)

k,λ
is [25]

∂t f (s)
k,λ

= −I (sb)
k,λ

, (11)

where I (sb)
k,λ

is the electron-electron collision integral between
surface and bulk electrons [resulting from the interaction in
Eq. (3)]. This conserves their numbers separately but allows
for the exchange of energy between them. We will specify the
collision integral in the following subsection. First, however,
we will derive the general expression for the cooling rate.

To obtain the cooling rate, we multiply Eq. (11) by the
energy of the surface state, ε(s)

k,λ
, and sum over all wave vectors
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k and all values of the surface-band index λ. The left-hand
side of the so-obtained equation yields the time derivative of
the energy stored in surface states, ∂t Es. The latter is rewritten
as ∂t Es = Cs∂t Ts, where the heat capacity of surface states is
defined as [25]

Cs =
∑

λ

∫
d2k

(2π )2
ξ

(s)
k,λ

(
−∂ f (s)

k,λ

∂ξ
(s)
k,λ

)[
ξ

(s)
k,λ

Ts
+ ∂μs

∂Ts

]
. (12)

Here, ξ
(s)
k,λ

= ε
(s)
k,λ

− μs. The derivative of the surface chemical
potential μs ≡ μs(Ts) with respect to temperature is obtained
by imposing the conservation of the surface electron den-
sity [25]. Defining the power dissipated into bulk states as
Q = ∑

k,λ I
(sb)
k,λ

ε
(s)
k,λ

≡ γCs(Ts − Tb), Eq. (11) yields the cool-

ing rate [25]

γ = Q
(Ts − Tb)Cs

. (13)

In the following we first define the collision integral and then
calculate Q, and thus γ .

IV. THE COOLING RATE—SURFACE-TO-BULK
POWER DISSIPATION

To calculate the power dissipated into bulk states, we first
have to obtain the collision integral due to the interaction
of Eq. (3). Within the Fermi-golden-rule approximation, the
collision integral on the right-hand side of Eq. (11) reads

I (sb)
k,λ

= 2
2π

h̄A2Lz

∑
k′,k̃′

,q

∑
λ′

∑
η,η′

∫ ∞

−∞
dωV 2

q,k′,k̃′Fk,λ;k+q,λ′δ
(
ε

(s)
k,λ

− ε
(s)
k+q,λ′ + ω

)
δ
(
ε

(b)
k′,η − ε

(b)

k̃
′
,η′ − ω

)
δ(k′

‖ − k̃
′
‖ − q)

× [
f (s)
k,λ

f (b)
k′,η

(
1 − f (s)

k+q,λ′
)(

1 − f (b)

k̃
′
,η′

) − (
1 − f (s)

k,λ

)(
1 − f (b)

k′,η

)
f (s)
k+q,λ′ f (b)

k̃
′
,η′

]
, (14)

where the factor 2 upfront accounts for the spin degeneracy of
bulk states, ω and q are the transferred energy and momentum
parallel to the surface, k′

‖ and k̃
′
‖ are the components of the

three-dimensional momenta k′ and k̃
′

parallel to the surface,
A is the surface area of the topological insulator, and Lz its
extension in the third dimension. In this equation, Fk,λ;k+q,λ′ is
the squared matrix element of the surface-electron density op-
erator between incoming and outgoing scattering states. Since
bulk states are standing waves, the z components of the three-
dimensional momenta k′ and k̃

′
are taken to be positive. The

matrix element of the screened Coulomb interaction Vq,k′,k̃′

is obtained by integrating it over the incoming and outgoing
scattering states, i.e.,

V 2
q,k′,k̃′ = 4

∣∣∣∣
∫ ∞

0
dz sin(k′

zz) sin(k̃′
zz)e−

√
q2+q2

TF (q,ω)z

∣∣∣∣
2

|φ̄q|2.

(15)

This matrix element is manipulated in Appendix A to give

V 2
q,k′,k̃′ � |φ̄q|2 π2

4
√

q2 + q2
TF(q, ω)

δ(k′
z − k̃′

z )

≡ V 2
q δ(k′

z − k̃′
z ). (16)

To obtain this expression, we have evaluated the integral on
the right-hand side of Eq. (15) and approximated it in the
limit of small q and qTF(q, ω) (the latter is justified when the
bulk is undoped and kBTb 	 2�). In this case, the weight of
the integral is located around the lines k̃′

z = ±k′
z. Thus, we re-

placed Lorenzians of width
√

q2 + q2
TF(q, ω) with δ functions.

Finally, we used that k̃′
z and k′

z must be taken to be positive.

Putting Eq. (16) back into Eq. (14), after some lengthy but
straightforward algebra we get

Q = 4

π h̄

∫
d2q

(2π )2
V 2

q

∫ ∞

0
dωω[n(s)(ω) − n(b)(ω)]

×
mχb(q, ω)
mχs(q, ω), (17)

where n(s/b)(ω) = [eh̄ω/(kBTs/b ) − 1]
−1

. In Eq. (17),


mχs(q, ω) = − π

A
∑

k,λ,λ′

(
f (s)
k,λ

− f (s)
k+q,λ′

)
Fk,λ;k+q,λ′

× δ
(
ε

(s)
k,λ

− ε
(s)
k+q,λ′ + ω

)
(18)

and


mχb(q, ω) = − π

ALz

∑
k′,η,η′

(
f (b)
k′,η − f (b)

k′−q,η′
)

× δ
(
ε

(b)
k′,η − ε

(b)
k′−q,η′ − ω

)
(19)

are the imaginary parts of the density-density response func-
tions of surface [33–35] and bulk [32] states, respectively. The
function 
mχb(q, ω), not to be confused with the function
χ̄b(q, ω) introduced in Sec. II A, is calculated in Appendix B.

The cooling rate γ is obtained by inserting Q in Eq. (17)
back into the definition (13), and reads

γ = − 4

π h̄Cs

∫
d2q

(2π )2
V 2

q

∫ ∞

0
dωω

n(s)(ω) − n(b)(ω)

Ts − Tb

×
mχb(q, ω)
mχs(q, ω). (20)

This equation is the key result of this paper. We stress that
Eq. (20) describes the exchange of heat from surface to bulk
electrons and vice versa. This is at the origin of the difference
in Bose factors in Eq. (20).
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V. RESULTS

We now show our results for the cooling time of electrons
in the surface state of a topological insulator and in graphene
in proximity to a small-gap material. We find that the bulk
behaves as an efficient heat sink for electrons, yielding sub-
picosecond cooling times.

We start with the surface states of the topological insulator.
We numerically evaluate Eq. (13), with the heat capacity of
surface states and power lost to bulk states given by Eqs. (12)
and (17), respectively. For the sake of definiteness, in the
numerical calculations, we set the surface Fermi velocity [36]
vF = 0.5×106 m/s, while the bulk is left undoped, i.e., its
electron density is nb = 0 (which translates into μb = 0).
The bulk temperature is set to Tb = 300 K, which is much
smaller than the bulk-band gap [37] 2� = 200 meV. Under
these conditions, the bulk bands are nearly unpopulated and
we can thus safely take qTF(q, ω) = 0 in Eqs. (10) and (15).
Finally, the bulk electron mass is set to [38,39] m = 0.21me,
where me = 9.1×10−31 kg is the bare electron mass, while the
dielectric constant of the (undoped) topological insulator is
taken to be [40] εb = 10. We would like to point out that the
topological insulators that we describe have no charge carriers
in the bulk, at low temperature, which corresponds to a Fermi
energy inside the gap. Most common growth methods of bi-
nary topological insulators, such as Bi2Se3 and Sn2Te3 result
in a Fermi energy either in the valance or conduction band.
However, there are well-known methods to produce topolog-
ical insulators with Fermi energy in the gap, for example by
using appropriate substrate materials [41] or using mixtures
with controlled stoichiometry such as Bi1.4Sb0.6Te1.51Se1.49

(BSTS) [19]. The effect of bulk thermal excitations is included
in our theory via the bulk response function. Furthermore,
since the typical energies of excitations here are of the
order of kBTs ∼ 10–100 meV (in particular, they can be in-
terband transitions), the dielectric constant should be taken to
be the one at intermediate frequencies, not the zero-frequency
one.

In Fig. 2 we show the cooling rate for surface-to-bulk
Coulomb cooling in topological insulators (with Fermi energy
in the bulk band gap) calculated from Eq. (13). In Fig. 2(a) we
present our numerical results for three different values of the
surface electronic density and as a function of temperature Ts.
The three chosen densities as ns = 0 cm−2, i.e., an undoped
system with Fermi energy at the surface Dirac crossing, ns =
5×1011 cm−2 and ns = 1012 cm−2. the latter corresponds to a
Fermi energy close to the bottom of the bulk conduction band.
We find that the cooling rate depends only weakly on surface
carrier concentration, while it depends quite strongly on tem-
perature. In particular, it decreases rapidly at low temperatures
(i.e., for the surface temperature approaching the bulk one).
Curiously, we find that the cooling rate exhibits a maximum
at a temperature approximately equal to half the bulk-band
gap.

This behavior can be understood by noting that surface
electrons can be very hot. As shown in Fig. 2(a), their temper-
ature can be of thousands of Kelvins. At these temperatures
their Fermi distribution is very broadened. Thus, they can un-
dergo both intra- and inter-band transitions (where the bands

(b)

FIG. 2. (a) The cooling rate for Dirac-like surface states
(vF = 0.5×106 m/s) in proximity to an undoped 3D bulk (nb = 0,
which translates into μb = 0) kept at room temperature (Tb = 300 K,
much smaller than the gap energy: kBTb 	 2�), calculated from
Eq. (13) and plotted as a function of temperature. Curves exhibit a
maximum at a surface electron temperature corresponding to half
the bulk-band gap, � = 100 meV (dashed line). (b) The cooling rate
is very weakly dependent on surface carrier density. The parameter
used in these calculations are given at the beginning of Sec. V and
are recalled here for convenience. The bulk electron mass is set to
[38,39] m = 0.21me, where me = 9.1×10−31 kg is the bare electron
mass, while the dielectric constant of the (undoped) topological
insulator is taken to be [40] εb = 10.

involved here are the surface ones). At the same time bulk
electrons are kept at room temperature. Thus, they experience
both intraband excitations within the valence and conduction
bands and interband ones from the valence to the conduction
band. For a surface-electron temperature of the order of the
bulk-band gap, excitations of surface states occurring with
energies of the order of kBTs become resonant with the bulk
interband excitations. The weight of such excitations grows
sharply for energies larger than 2�. The latter fact is seen
in the plots of the bulk density-density response (the bulk
absorption spectrum) given in Appendix B. However, the
cooling rate must fall off rapidly at low temperatures, because
interband processes become heavily suppressed. This effect is
clearly visible in Fig. 2(a).

We stress that, for different values of the bulk-band gap,
the cooling rate is expected to follow similar functional form
as shown in Fig. 2(a). The main difference being that the peak
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(b)

FIG. 3. The cooling rate for Dirac-like states in graphene
(vF = 106 m/s) in proximity to an undoped 3D bulk identical to that
of Fig. 2, calculated from Eq. (13). (a) As a function of temperature, it
exhibits a maximum at a surface electron temperature corresponding
to half the bulk-band gap � (dashed line). (b) The cooling rate is very
weakly dependent on surface carrier density. The parameters used in
these plots are given in Sec. V and Fig. 2.

occurs at different temperatures of the order of the bulk-band
gap. Thus for smaller (larger) gaps, the peak temperature will
be lower (higher).

In Fig. 2(b) we show the cooling rate as a function of the
surface density ns and for three values of the temperature,
Ts = 500, 1000, and 1500 K. We see that the numerical results
are practically independent of carrier density at the highest
temperatures, and only weakly dependent at the lowest one.
This can be understood as a consequence of the complete
smearing of the surface occupation function at temperatures
much larger than the Fermi energy. Only at the lowest temper-
atures and highest densities achievable in our model we start
observing some deviation from perfect flatness.

In Fig. 3 we show the cooling rate for a graphene sheet in
direct contact with a small-gap bulk material as a function of
temperature [in Fig. 3(a)] and carrier density [in panel (b)].
For the bulk material, we use the same 3D topological in-
sulator used above, i.e., the 3D parameters are taken to be
the same. However, for the “surface” states (now a graphene
sheet), the number of fermion flavors is set to [1] Nf = 4,
while the Fermi velocity is doubled, i.e., we use [1] vF =
106 m/s. Comparing Figs. 2 and 3, we see that graphene

would exhibit dynamics approximately four-five times faster
than the topological-insulator surface states. This is surprising
because, thanks to the doubling of the Fermi velocity and
quadrupling of the number of fermion flavors, the density of
states of undoped graphene and of the surface states studied
above are (accidentally) identical. This in turn implies that, in
the undoped limit, they also exhibit the same heat capacity.

The reason for the enhanced cooling rate is instead to
be found in the typical energies of particle-hole excitations,
which are different in the two systems. Due to the linear
energy dispersion, the typical energy exchanged by surface
and bulk states during a collision is ω � h̄vFq. This in turn
implies that, for a given value of momentum h̄q, the energy
exchanged between graphene and bulk electrons is twice the
energy exchanged between surface and bulk states. Thus, the
cooling dynamics proceeds at a faster pace in graphene, even
if the number of interactions per unit time is the same as in
a topological insulator, a fact that is reflected in the larger
cooling rate.

If a spacer is introduced between the graphene and bulk
material, then the interaction decreases exponentially as e−qd ,
as shown at the end of Sec. II A. The wave vector q is of the
order of the graphene Fermi wave vector. Thus, for the carrier
densities and (high) temperatures explored in this paper, the
interaction is expected to be suppressed for graphene-bulk
distances exceeding 10 nm. We therefore expect the cooling
time to grow significantly for larger spacer thicknesses.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have developed the theory of the cooling
dynamics of electrons in the surface states of a topological
insulator, as well as in a graphene sheet, coupled to bulk states
via nonretarded Coulomb interactions. The aim has been to
explore the cooling capabilities of all-electronic surface-bulk
coupling in these systems. For this reason, we have employed
a simplified model: we have treated the surface states (and
graphene electrons) as massless Dirac fermions characterized
by a Dirac-like energy dispersion. We have neglected cor-
rections due to, e.g., trigonal warping, which are expected
to be only minor. We have considered a fully gapped bulk
with particle-hole symmetric parabolic-energy bands of equal
masses. We have neglected all possible couplings between
surface and bulk states (such as impurity or phonon-mediated
hopping) with the exception of a density-density interaction
of the Coulomb type. The latter conserves the number of
electrons in surface and bulk states separately, but allows the
exchange of energy between them. We have thus studied how
such near-field radiative coupling can efficiently transfer en-
ergy between the surface and the bulk. We have thus explored
an alternative mechanism to phonon-mediated cooling, which
can be very efficient and could become dominant in some
circumstances.

In fact, we find that Coulomb cooling can out-compete
other cooling mechanisms. We find cooling rates of the order
of few inverse picoseconds for the surface states of topological
insulators, which agrees with a recent result reported in the
literature [19]. More surprisingly, we find that the cooling time
of graphene in contact with a narrow-band insulating material
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can be as short as a tenth of picosecond. This is significantly
faster than graphene cooling via optical, acoustic and substrate
phonons, which typically occurs on a picosecond timescale
[21–26].

A true comparison between different cooling pathways
would require a significantly more detailed work to describe
the impact of disorder, phonons, etc., on the cooling dy-
namics. All these mechanism are also potentially strongly
dependent on material characteristics, and therefore it would
be hard to derive general and universal trends. On the contrary,
our model depends on few, experimentally available param-
eters (e.g., the surface Fermi velocity, the bulk-band mass,
the undoped-material dielectric constant). Thus, it could be
employed to study universal trends in electronic cooling of
surfaces of topological insulators.

We further observe that, although we have not treated
phonon cooling in this paper, the interaction we describe could
be thought as the result of phonon emission and re-absorption
by the electrons at the surface and in the bulk, respectively.
Such phonon-number-conserving processes could be easily
incorporated in the theory and would result in a further en-
hancement of cooling rates. Finally, we stress that the theory

also applies, with minor modifications, to graphene in prox-
imity to narrow-gap materials, as we have shown above. This
fact, which broadens the applicability of the present theory,
has also important practical implications. Graphene is in fact
one of the most studied materials for optoelectronic applica-
tions. The slowing down of cooling dynamics at high powers
limits however its potential, for example, to applications such
as higher harmonic generation [19]. The fact that heat dissi-
pation could be made more efficient via near-field coupling
to narrow-gap materials offers a novel way to overcome the
limitation intrinsic to current graphene devices.
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APPENDIX A: MANIPULATION OF THE SURFACE-BULK INTERACTION

The integration of Eq. (15) yields

V 2
q,k′,k̃′ = ∣∣φ̄q

∣∣2

⎧⎨
⎩

√
q2 + q2

TF(q, ω)[
q2 + q2

TF(q, ω)
] + (k′

z − k̃′
z )2

−
√

q2 + q2
TF(q, ω)[

q2 + q2
TF(q, ω)

] + (k′
z + k̃′

z )2

⎫⎬
⎭

2

. (A1)

We now observe that, for small q and q2
TF(q, ω), the regime of interest for the processes we are describing, the two terms on the

right-hand side of Eq. (A1) are sharply peaked around k̃′
z = k′

z and k̃′
z = −k′

z, respectively. Thus, we approximate them with two
δ functions, making sure that their total integral (over the variable k̃′

z) remains unchanged. We thus obtain

V 2
q,k′,k̃′ �

[
4πe2

(εb + 1)q − 4πe2χs(q, ω)

]2
π2

4
√

q2 + q2
TF(q, ω)

[
δ(k′

z − k̃′
z ) + δ(k′

z + k̃′
z )

]

�
[

4πe2

(εb + 1)q − 4πe2χs(q, ω)

]2
π2

4
√

q2 + q2
TF(q, ω)

δ(k′
z − k̃′

z ). (A2)

In the last line we noticed that k′
z and k̃′

z must be taken as positive, since the bulk wave functions describe standing waves
(negative wave vectors correspond to the same wave function).

APPENDIX B: THE DENSITY-DENSITY RESPONSE OF BULK ELECTRONS

The imaginary part of the density-density function in Eq. (19) is given by


mχb(q, ω) = −π
∑
η,η′

∫
d3k

(2π )3
[ f (ηεk + η� − μb) − f (ηεk + η� + ω − μb)]δ(ω + ηεk + η� − η′εk+q − η′�). (B1)

Here we rewrote εk,η = η� + ηεk, introducing εk = k2/(2m). We also defined f (ξ ) = [eξ/(kBTb ) + 1]
−1

and introduced the
chemical potential of bulk bands μb. In what follows, we assume ω > 0 and analyze separately the intraband (η′ = η) and
interband (η′ �= η) contributions to Eq. (B1).
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1. Intraband term

In this case, η′ = η. Hence,


mχ
(intra)
b (q, ω) = − 1

4π

∑
η

∫ ∞

0
dkk2

∫ π

0
dθ sin θ [ f (ηεk + η� − μb) − f (ηεk + η� + ω − μb)]δ(ω + ηεk − ηεk+q).

(B2)

The δ function implies that

ω + η
k2

2m
− η

k2 + q2 + 2kq cos(θ0)

2m
= 0 ⇒ cos(θ0) = m

kq

(
q2

2m
− ηω

)
. (B3)

Solutions exist for

−kq

m
� q2

2m
− ηω � kq

m
⇒ k � m

q

∣∣∣∣ q2

2m
− ηω

∣∣∣∣ ≡ k0. (B4)

Therefore,


mχ
(intra)
b (q, ω) = − 1

4π

∑
η

∫ ∞

0
dkk2[ f (ηεk + η� − μb) − f (ηεk + η� + ω − μb)]

m

kq

∫ π

0
dθδ(θ − θ0)

= − m

4πq

∑
η

∫ ∞

k0

dkk[ f (ηεk + η� − μb) − f (ηεk + η� + ω − μb)]

= − m2

4πq

∑
η

∫ ∞

k2
0/(2m)

dε[ f (ηε + η� − μb) − f (ηε + η� + ω − μb)]

= − m2

4πq

∑
η

η

∫ ∞

k2
0/(2m)

dε[ f (ε + � − ημb) − f (ε + � + ηω − ημb)]

= − m2kBT

4πq

∑
η

η

{
ln

[
1 + exp

(
ημb − �

kBTb
− k2

0

2mkBTb

)]
− ln

[
1 + exp

(
ημb − ηω − �

kBTb
− k2

0

2mkBTb

)]}
.

(B5)

2. Interband term

In this case, η′ = −η. Hence,


mχ
(inter)
b (q, ω) = − 1

4π

∑
η

∫ ∞

0
dkk2

∫ π

0
dθ sin θ [ f (ηεk + η� − μb) − f (ηεk + η� + ω − μb)]

× δ(ω + 2η� + ηεk + ηεk+q). (B6)

It is clear that, for the δ function not to vanish, it must be η = −1. This in turn implies that

ω − 2� − k2

2m
− k2 + q2 + 2kq cos(θ0)

2m
= 0 ⇒ cos(θ0) = m

kq

(
ω − 2� − 2k2 + q2

2m

)
. (B7)

Solutions exist for

−kq

m
� ω − 2� − 2k2 + q2

2m
� kq

m
⇒

⎧⎪⎪⎨
⎪⎪⎩

k2 − kq + 2m� − mω + q2

2
� 0

k2 + kq + 2m� − mω + q2

2
� 0

⇒ |k−| < k < k+,

where

k± = q ±
√

4(mω − 2m�) − 2q2

2
, ω > 2� + q2

2m
. (B8)
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(a) (b)

(c) (d)

FIG. 4. The density-density response function of bulk electrons in units of �2/(h̄vF )3 (vF = 0.5×106 m/s), for a fixed value of the wave
vector q and as a function of energy ω (in units of the half-gap �). In each panel we show three curves, one for each temperature (T =
10, 300, and 600 K, respectively). (a) Here q = 0.5q� and the chemical potential is μb = 0 (undoped system). (b) Same as in panel (a), but
for q = 1.5q�. (c) Here q = 0.5q� and the chemical potential is μb = 1.4� (n-doped system). (d) Same as in panel (c), but for q = 1.5q�.
The parameters used in these plots are the same as those used in Sec. V, except that � = 50 meV. We also defined q� = �/(h̄vF ).

Therefore,


mχ
(inter)
b (q, ω) = − 1

4π

∫ ∞

0
dkk2[ f (−εk − � − μb) − f (−εk − � + ω − μb)]

m

kq

∫ π

0
dθδ(θ − θ0)

= − m

4πq

∫ k+

|k−|
dkk[ f (−εk − � − μb) − f (−εk − � + ω − μb)]

= m2

4πq

∫ k2
+/(2m)

k2−/(2m)
dε[ f (ε + � + μb) − f (ε + � − ω + μb)]

= m2kBT

4πq

{
ln

[
1 + exp

(
−μb + �

kBTb
− k2

−
2mkBTb

)]
− ln

[
1 + exp

(
−μb + �

kBTb
− k2

+
2mkBTb

)]

− ln

[
1 + exp

(
−μb − ω + �

kBTb
− k2

−
2mkBTb

)]
+ ln

[
1 + exp

(
−μb − ω + �

kBTb
− k2

+
2mkBTb

)]}
. (B9)

3. Results

Figure 4 shows results for the imaginary part of the bulk density-density response function, 
mχb(q, ω), where its intra- and
interband parts are given in Eqs. (B5) and (B9), respectively. The parameters used in these plots are those given in Sec. V, with the
exception of the half-gap which has been set to � = 50 meV for convenience reasons. Different panels correspond to different
values of the chemical potential and of the wave vector q [in units of q� = �/(h̄vF)] used. In each plot the density-density
response function of bulk electrons is shows in units of �2/(h̄vF)3, where vF = 0.5×106 m/s, as a function of energy ω. The
latter is in units of the half-gap �. In each panel we show three curves, one for each temperature, T = 10, 300, and 600 K,
respectively.
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