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Low-dimensional materials have left a mark on modern materials science,
creating new opportunities for next-generation optoelectronic applications.
Integrating disparate nanoscale building blocks into heterostructures offers
the possibility of combining the advantageous features of individual compo-
nents and exploring the properties arising from their interactions and
atomic-scale proximity. The sensitization of graphene using semiconduc-
tors provides a highly promising platform for advancing optoelectronic ap-
plications through various hybrid systems. A critical aspect of achieving su-
perior performance lies in understanding and controlling the fate of
photogenerated charge carriers, including generation, transfer, separation,
and recombination. Here, we review recent advances in understanding
charge carrier dynamics in graphene-semiconductor heterostructures by ul-
trafast laser spectroscopies. First, we present a comprehensive overview of
graphene-based heterostructures and their state-of-the-art optoelectronic
applications. This is succeeded by an introduction to the theoretical
frameworks that elucidate the fundamental principles and determinants
influencing charge transfer and energy transfer—two critical interfacial pro-
cesses that are vital for both fundamental research and device performance.
We then outline recent efforts aimed at investigating ultrafast charge/
energy flow in graphene-semiconductor heterostructures, focusing on illus-
trating the trajectories, directions, and mechanisms of transfer and recom-
bination processes. Subsequently, we discuss effective control knobs that
allow fine-tuning of these processes. Finally, we address the challenges
and prospects for further investigation in this field.

INTRODUCTION

A wealth of low-dimensional materials with fascinating optical and electrical
properties—often beyond the reach of their bulk counterparts—has significantly
expanded the candidate library for next-generation optoelectronic applications.
One of the most prominent examples is the mechanical exfoliation of graphene,
which consists of a monolayer of sp?-hybridized carbon atoms arranged in a hon-
eycomb lattice." The massless nature of charge carriers in graphene renders it
one of the most conductive materials ever discovered, with reported charge mo-
bilities exceeding 100,000 cm?/(V-s).”* Furthermore, owing to its gapless elec-
tronic band structure, graphene exhibits ultra-broadband electromagnetic ab-
sorption covering frequencies from ultraviolet to terahertz.° ® The combination
of ultrahigh charge mobility and broadband optical absorption makes graphene
highly promising for light sensors and detectors.” Despite the success of several
proof-of-concept demonstrations, photodetectors with graphene as the photoac-
tive material typically have a responsivity well below 1 A/W.'%"® Such low re-
sponsivity is primarily attributed to graphene’s relatively weak optical absorption
(2.3% for suspended graphene)”® and, in the case of hot-carrier-based detec-
tors,'” the short photocarrier lifetime, which is on the order of a few picoseconds
(ps)."® %2 In this context, enhancing graphene's light detection sensitivity through
the incorporation of other low-dimensional building blocks that exhibit strong
light-matter interactions presents a promising route, as it can simultaneously in-
crease optical absorption and extend excited-state lifetimes through interfacial
charge separation.?>** Furthermore, the tunable dimensionality, thickness, and
chemical composition of sensitizers, along with designable interlayer electronic

coupling and programmable stacking configurations, provide a versatile toolkit
for pursuing high-performance photodetectors. For example, Konstantatos and
Koppens et al.** pioneered the integration of zero-dimensional (OD) colloidal
quantum dots (QDs) on graphene to create mixed-dimensional van der Waals
heterostructures (vdWHs). The resulting phototransistor exhibited an ultrahigh
photodetection gain of ~108 electrons per photon and a responsivity of ~107
A/W. Following this seminal work, the types of sensitizers have been substan-
tially expanded (Figure 1), leading to numerous photodetectors with broad band-
width and exceptional properties.®?4%1%2

Beyond photodetection, graphene-semiconductor vdWHs also  offer
numerous possibilities for advancing emerging optoelectronic applications,®*
including but not limited to photovoltaics,*® ¢ opto-valleytronics,”**° photoca-
talysis,*%*! modulators,”>** and photoresponsive memory devices (Figure 1).**
For instance, thanks to its excellent in-plane mechanical strength, ease of solu-
tion processability, outstanding charge carrier mobility, and high optical transpar-
ency, graphene can function as a transparent electrode or an atomically thin pho-
toabsorber in photovoltaic cells. In 2010, Li et al.*® demonstrated the first
graphene-on-silicon Schottky junction solar cell, achieving a power conversion ef-
ficiency (PCE) of 1.5% under AM 1.5G irradiation. Subsequent research has
focused on improving efficiency and robustness through several approaches:
(1) tuning graphene’s work function through chemical doping,*® (2) boosting light
absorption and current density by leveraging the plasmonic effects of metallic
nanoparticles anchored on graphene,*’**® (3) implementing antireflection coat-
ings,"® (4) augmenting the surfaceunction barrier and open-circuit voltage by
incorporating electron-blocking and/or hole-transporting interlayers to reduce
carrier recombination,”® >* and (5) interfacing graphene with other promising
photovoltaic materials, such as IlI-V family compounds and hybrid perov-
skites.®® °° These strategies have enabled graphene-semiconductor-based solar
cells to achieve remarkable PCE values exceeding 18%.°°°"

In the field of photocatalysis, graphene-semiconductor vdWHs have been
widely employed in heterogeneous photocatalytic applications, including photo-
catalytic water splitting, pollutant degradation, carbon dioxide reduction, and bac-
terial disinfection.®” In these contexts, the graphene-semiconductor interface is
expected to reduce the charge recombination rate through facilitating interfacial
charge separation, thereby enhancing the overall photocatalytic efficiency. For
example, Sorcar et al.?” synthesized Pt-sensitized graphene-titania heterostruc-
tures for carbon dioxide reduction. Their findings indicated that efficient interfa-
cial charge separation occurs upon light absorption, with photogenerated holes
and electrons accumulating in graphene and on the Ti®* sites, respectively,
contributing to a high combined photocatalytic yield of ethane and methane
of 7.9%.

Graphene-semiconductor vdWHs also hold significant opportunities in opto-
valleytronics, which exploits electron spin and valley degrees of freedom for infor-
mation storage and logic operations. A prominent material architecture involves
vdWHSs composed of graphene and transition metal dichalcogenides (TMDCs),
where the strong light-matter interactions and spin-valley locking in TMDCs com-
plement graphene's exceptional electron and spin transport properties. Luo
et al.*® performed in-plane Hanle spin precession measurements in monolayer
MoS,/few-layer graphene vdWHSs, marking the first experimental observation
of room temperature opto-valleytronic spin injection from MoS; to few-layer gra-
phene. This was followed by lateral spin transport within the few-layer graphene
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Figure 1. Graphene-based vdWHs and their (opto)electronic applications Figures reproduced with permission: photovoltaics, Miao et al.>® copyright 2012, American Chemical
Society; photodetectors, Liu et al.?° copyright 2021, American Chemical Society; photocatalysis, Sorcar et al.,>” copyright 2018, The Royal Society of Chemistry; opto-valleytronics,
Avsar et al,”® copyright 2017, American Chemical Society; optical modulators, Guo et al.” copyright 2020, Wiley-VCH; memory, Mukherjee et al. > copyright 2020, Wiley-VCH.

layer and electrical spin detection using a ferromagnetic (FM) spin detector with
in-plane magnetization. Avsar et al.? further designed vdWHSs comprising mono-
layer WSe,, monolayer graphene, and hexagonal boron nitride (h-BN) for efficient
spin injection. This architectural design benefited from a near-unity valley polar-
ization, high external quantum efficiency, and strong spin-orbit-coupling-induced
spin splitting of up to ~450 meV of monolayer WSe,.%® They discovered that
circularly polarized light stimulated spin-polarized charge carriers in the WSe,
layer through spin-coupled valley-selective absorption. The resulting spin-polar-
ized charges could be injected into the adjacent graphene layer and then migrate
up to 3.5 um to Co/h-BN contacts. The advanced tunability of the spin polariza-
tion magnitude and direction via helicity, photon energy, and material composi-
tion paved the way for versatile 2D spintronic devices for memory and logic
applications.*°

Furthermore, integrating graphene with optical waveguides has led to ad-
vancements in the development of optical modulators, where the coupling be-
tween evanescent waves and graphene can be greatly enhanced to increase
the interaction length. In 2011, Liu et al.°* reported the first waveguide-integrated
graphene-based electro-absorption modulator by integrating graphene with a Si
waveguide. By electrically tuning graphene’s Fermi level (Er), they achieved an
optical modulator featuring a broad optical bandwidth (1.35-1.60 um), a
compact device footprint (25 um?), and a high operation speed (1.2 GHz at
3 dB) under ambient conditions. Subsequent development by Phare et al.%® led
to the realization of an ultrafast graphene-based modulator that effectively over-
came the trade-off between speed and efficiency by exploiting critical coupling
effects in a silicon nitride ring resonator, achieving an operation bandwidth of
30 GHz and a modulation efficiency of 15 dB per 10 V. Recent efforts toward
on-chip all-optical devices have scaled down the building blocks to the 2D limit
by employing graphene-TMDC vdWHs. Thanks to the ultrafast charge injection
from monolayer MoS, to graphene, Guo et al.° achieved plasmonic modulation

of 44 cm™" under light-emitting diode (LED) light with an intensity as low as
0.15 mW/cm?, which is four orders of magnitude smaller than that of conven-
tional graphene-based, nonlinear, all-optical modulators (= 10° mW/cm?). These
findings establish a foundation for ultracompact on-chip optical modulators with
low energy consumption, which could be crucial for next-generation information
processing and communication.

From a microscopic perspective, the device performance of such heterostruc-
tures is often intricately connected to the interface physics. Therefore, under-
standing and controlling interfacial charge carrier dynamics is crucial for
optimizing device performance. Recent studies”*>°° % have investigated
photo-induced charge/energy flow in various graphene-based vdWHs. We direct
the reader to previous references,**“® where the fundamentals of charge transfer
(CT) and energy transfer (ET) phenomena in vdWHSs have been extensively dis-
cussed. Yet, to the best of our knowledge, timely reviews elucidating the detailed
interfacial processes, the competing nature of CT and ET, and their control knobs
are still lacking. To fill this gap, this review summarizes recent advances and de-
bates in tracking and controlling interfacial CT/ET and recombination in gra-
phene-semiconductor vdWHs. We first focus on the physical processes and
dynamical phenomena taking place at graphene-semiconductor interfaces.
Following this, we further introduce the mechanisms controlling the flow of
charge and energy at these interfaces and how the rates can be tuned externally.
Finally, challenges and opportunities in this field are discussed to guide further
research.

UNDERSTANDING ULTRAFAST CHARGE AND ENERGY FLOW ACROSS
GRAPHENE-SEMICONDUCTOR vdW INTERFACES
Fundamentals of CT and ET processes

CT and ET processes are ubiquitous and crucial for a wide range of technolog-
ical applications, including biosensing, photosynthesis, photocatalysis,
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Figure 2. Schematics of CT and ET pathways (A and B) Photo-induced (A) electron transfer and (B) hole transfer. (C and D) Photo-induced (C) Forster-type and (D) Dexter-type ET. As
examples, here we consider the semiconductor as the donor and graphene as the acceptor.

photovoltaics, and photodetection.®*° 8 Graphene-based vdWHSs provide an
exceptional platform for exploring CT/ET, thanks to the dangling-bond-free
atomic interface without any lattice matching constraints and the ultimate prox-
imity that facilitates near-field electronic coupling.

Upon photon absorption in a semiconductor, photogenerated charge carriers
can undergo relaxation and transfer phenomena involving CT/ET across the
interface. The interfacial relaxation process can generally be divided into CT
(via, e.qg., electron or hole transfer), Forstertype ET, and Dexter-type ET
(Figures 2A-2D).

Among them, CT is a short-range process (within 1 nm) that leads to the
buildup of net charges of opposite signs in adjacent layers.®® In contrast, Forster-
and Dexter-type ET are non-radiative processes with no net charge accumulation
on either side of the constituent. Specifically, Forster-type ET is a relatively long-
range process (1-10 nm) mediated by near-field dipole-dipole coupling, in which
the acceptor instantly absorbs virtual photons emitted from the donor. The For-
ster-type ET rate (keer) depends on the donor-acceptor distance, their spectral
overlap, and the relative orientation of their dipole moments. Previous studies
have shown that keer is inversely proportional to the donor-acceptor distance,
with a power-law exponent determined by the geometry and dimension of the
acceptor.® 9" In contrast, Dexter-type ET relies on wavefunction overlap be-
tween the donor and acceptor and occurs in the form of short-range coulomb
interactions (<1 nm) by simultaneously transferring photogenerated electrons
and holes from the donor to the acceptor. This feature allows Dexter-type ET
to occur even between two non-emissive electronic states in a manner that
obeys Wigner's spin conservation rules (e.g., ET between two spin-allowed singlet
states or two spin-forbidden triplet states).”” Along with Forster-type and Dexter-
type ET mechanisms, it is worth highlighting that near-field radiation also enables
efficient energy flow across the graphene interface. This includes processes
such as the cooling of hot carriers in graphene to substrate phonons via elec-
tron-hyperbolic phonon coupling® and plasmon launching into graphene from
nearby quantum emitters.®*

These theoretical considerations suggest that CT/ET rates and efficiencies are
susceptible to both intrinsic factors, such as electronic coupling strength, driving
force, and Fermi energy, and extrinsic factors, including the environment and
temperature. From this aspect, graphene-based vdWHs offer tremendous oppor-
tunities to exploit the subtle interplay between these determinants through
rational design of the chemical composition, dimensionality, stacking configura-
tion, defect, dielectric environment, etc. Furthermore, considering the unique
band alignment of graphene-semiconductor vdWHs, CT and ET can coexist
with efficiencies determined by their rate competition. Both processes have pro-
found implications for optoelectronic applications. For instance, CT at the gra-
phene-WS, interface has been shown to induce long-lived charge separation
and produce the so-called photogating effect to modulate the channel conduc-
tance,”?>°° thereby contributing to the ultrahigh photoconductive gain and re-
sponsivity of photodetectors.”® ¢ Furthermore, Férster-type ET from nitrogen-
vacancy centers in diamond to graphene has been demonstrated to generate
extra electron-hole pairs in graphene, whose electrical readout, in turn, allows

detection of the excited state and spin information of the optical emitter, relevant
for quantum technologies and metrology.®®

CT and ET: Experimental observations unveiling interfacial relaxation
pathways

Recent developments in laser spectroscopy and microscopy provide noninva-
sive and quantitative approaches to studying interfacial charge carrier dynamics
with ultimate temporal and spatial resolution.

Time- and angle-resolved photoemission spectroscopy (t-ARPES) is a power-
ful tool that directly maps time-, energy-, and momentum-resolved charge carrier
dynamics %727 8183190 Eor example, Aeschlimann et al.®® employed tr-ARPES to
investigate photo-induced non-equilibrium processes in epitaxial graphene-WS,
vdWHs (Figure 3A). Following resonant photoexcitations, they tracked photoelec-
tron gain and loss in different energy-momentum regions (Figure 3B). They found
that the WS, conduction band was populated with electrons undergoing single-
exponential decay with a lifetime of 1.1 ps. In contrast, no hole population was
detected in the WS, valence band (Figure 3C). On the graphene side, the electron
gain above the equilibrium chemical potential decayed much faster (180 fs) than
the electron loss below the equilibrium chemical potential (1.8 ps). Altogether,
these observations suggested that photogenerated holes in WS, are rapidly
transferred to graphene within the instrument response, while photogenerated
electrons remain in the WS, conduction band, resulting in a charge separation
lifetime of ~1 ps. The net density of photogenerated holes transferred from
WS, to graphene was estimated to be ~5 x 10'? cm~2 (Figure 3D).

Combining tr-ARPES and microscopic many-particle theory, follow-up
studies®'# by the same group further revealed that the CT mechanism strongly
depends on the pump fluence. As shown in Figure 3E, with an increase of the
pump fluence, (1) the hole transfer rate from WS, to graphene increases, (2)
the lifetimes of photogenerated electrons in the WS, conduction band decrease,
and (3) the lifetime of the charge-separated state increases. The observed asym-
metric electron and hole transfer rates and their pump-fluence dependence were
explained by direct tunneling at the band crossing of graphene and WS, (Fig-
ure 3F). The authors rationalized the smaller tunneling energy barrier and larger
tunneling matrix elements for the holes in WS, compared to the electrons by a
scenario in which hole transfer is more favorable than electron transfer. However,
it was also noted that direct tunneling alone fails to reproduce the longer lifetime
of the charge-separated state at higher pump fluences, suggesting other
competing CT channels (e.g., defect-assisted tunneling channels; Figure 3F)
coexist. Overall, these results provide compelling evidence for CT and its trajec-
tories in graphene-based vdWHs.

Along with CT, ET is another important interfacial relaxation channel. In partic-
ular, even for the same above-mentioned graphene-WS, heterostructure, Fer-
rante et al.'°' reported efficient ET using time-resolved Raman scattering spec-
troscopy. ET was apparent from pump-induced transient changes in the G mode
and 2D mode in graphene, both of which are sensitive to doping and electronic
temperature (T,) induced by external perturbations.'® 1% CT causes transient
changes in the Er and T,, manifested by the evolution of the line shape and
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Figure 3. Experimental evidence of CT (A and B) Equilibrium photocurrent (A) and pump-induced photocurrent (B) change in a graphene-WS, vdWH. (C) Transient carrier population
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(E and F) Reproduced with permission.® Copyright 2021, American Physical Society.

intensity of the G and 2D modes. In contrast, ET only induces T, changes, char-
acterized by a transient decrease in 2D-mode intensity and G-mode broad-
ening.'%” As shown in Figures 4A—4C, no significant transient intensity changes
were observed in the G mode after photoexcitation. However, the 2D-mode inten-
sities in both graphene and graphene-WS, vdWHSs exhibit a transient decrease
associated with increasing Te, albeit at different decay rates. As shown in Fig-
ure 4D, T, in bare graphene exhibits a fast decay (0.6 ps) due to ultrafast energy
release into the phonon bath and substrate; T, in WS,-encapsulated graphene
undergoes a slower decay (4.3 ps), which is attributed to the Forster-type ET
from WS, to graphene (Figure 4E).'%®

Froehlicher et al.”* examined CT/ET in graphene-MoSe, vdWHSs by combining
micro-photoluminescence (PL) and Raman scattering spectroscopies. This com-
bination allowed for the exploration of CT/ET-induced perturbations on intrinsic

A

radiative recombination in MoSe, and electron-phonon relaxation in graphene.
As shown in Figures 5A and 5B, the PL intensity in the coupled graphene-
MoSe, region is quenched by more than two orders of magnitude compared
to the bare MoSe; region and increases linearly with the incident photon flux
(¢pn)- Based on these observations, the authors proposed that interlayer coupling
created a non-radiative pathway that significantly shortened the exciton lifetime
in MoSe,. Comprehensive analysis of ¢,,-dependent Raman-active modes
and PL quenching efficiency (Figures 5C and 5D) revealed a critical transition
(at ~290 + 15 meV above the Dirac point in graphene) from photo-induced CT
to ET.#

Another key factor affecting CT-ET competition is photon energy. For example,
a tr-ARPES study by Dong et al.”® reported CT-ET crossover in graphene-WSe,
vdWHSs by tuning the photon energy. They found that selective excitation of
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graphene by below-band-gap photoexcitation populated the K and Q valleys in
the WSe, conduction band (Figure 5E), which was delayed with respect to the
rise of the hot-carrier population in graphene by ~50 fs (Figure 5F). Hot electrons
with sufficiently high excess energy were proposed to overcome the interfacial
energy barrier to occupy different valleys in WSe, through phonon-assisted inter-
layer tunneling and intervalley scattering. In contrast, following near-resonant
photoexcitation, deep-lying valence hole populations with an energy difference
of ~1.6 eV compared to Er were measured in graphene (Figure 5G). The
observed energy difference matched precisely the A-exciton resonance in
WSe,. Together with the rapid depletion dynamics of the exciton population in
WSe,, they interpreted this effect by the Meitner-Auger ET scenario: the annihila-
tion of excitons in WSe;, drives the intraband excitation of deep-lying valence elec-
trons in graphene into empty hole states below the Dirac point (Figure 5H). This
intraband excitation excludes the interband Forster-type ET mechanism, which is
supported by simulations.

These findings suggest that the branching ratio between CT and ET can be
tuned by controlling photoexcitation conditions, facilitating advanced optoelec-
tronic devices with sophisticated functionalities. On the other hand, different
tools have different sensitivities to CT and ET and operate in different excitation
density regimes; for instance, extremely strong photoexcitation conditions were
usually employed in tr-ARPES studies. A unified picture of the competition be-
tween CT and ET, in the same sample with complementary tools under widely
tunable photoexcitation conditions, is still missing and requires further
investigation.

CT AND RECOMBINATION MECHANISMS

The successful demonstration of CT and ET and the ability to modulate their
competition has inspired further understanding of transfer and recombination
mechanisms. In the following, we summarize recent spectroscopic efforts that
have shed light on the intriguing phenomena associated with interfacial CT
and recombination in graphene-semiconductor vdWHSs. We will particularly focus
our discussions on hot-carrier injection, defect-involved interfacial charge separa-
tion, and the buildup of interfacial electric fields following CT. These three
highlighted topics are not only of fundamental research interest but also have
far-reaching implications for relevant applications: (1) interfacing graphene
with energy-selective contacts allows for the extraction of hot carriers from gra-
phene,' """ relevant for efficient detection of sub-band-gap photons with high
photoresponsivity and broad spectral sensitivity.'>''® (2) Recent studies have
revealed the potential of defects to prolong interfacial charge separation times
through charge trapping.”*’® This mechanism enables one type of carrier to re-
circulate in graphene while the other type remains trapped in defect states. The
effect has been demonstrated to result in high photoconductive gain in photode-

tectors through the photogating effect.>**°° (3) Elucidating the direction of the
interfacial gating field can provide insights into the propagation direction of the
generated photocurrent, thereby offering fundamental guidance for device oper-
ation and advanced controls.””

Thermalized versus non-thermalized: Hot-carrier dissociation at
atomically thin interfaces

Along with donating charge/energy from the semiconductor to graphene,
another attractive topic in graphene-semiconductor vdWHs is harvesting hot car-
riers from graphene before they dissipate their excess kinetic energy in the form
of lattice heat: a concept at the heart of hot-carrier optoelectronics.'”''“~'""
Fundamentally, exciting graphene with a photon energy greater than twice the
Er produces nascent, non-thermalized high-energy carriers (Figure 6A). Subse-
quently, a rapid thermalization process sets in within tens of fs due to efficient
carrier-carrier scattering in graphene,'®'"'?° producing thermalized hot carriers
that follow a Fermi-Dirac distribution with elevated electron temperature (Fig-
ure 6B). While photocurrents arising from hot carriers have been demonstrated
in device studies,'”'?" a long-standing controversy has been whether carrier in-
jection occurs before or after thermalization.

Chen et al.''® investigated photoexcited carrier injection from graphene into
WS, using ultrafast transient reflectance (TR) spectroscopy. In their study, gra-
phene was selectively excited by below-band-gap photoexcitations, and the
excited-state population in WS, was probed by the pulsed white-light continuum.
Following hot-carrier injection from graphene into WS,, broadening and band-
filling effects of the A-exciton resonance in WS, were observed. The correspond-
ing TR kinetics (Figure 6C) showed a rise time of 27 + 4 fs and a decay time of
~1.2 ps, which were attributed to hot-electron transfer from graphene to WS,
and the subsequent back-transfer process, respectively. By measuring fluence-
dependent TR kinetics under different photon energies (Figure 6D), a hot-carrier
injection quantum yield of up to 50% was claimed. More importantly, the yield
was found to only depend on the photon energy rather than the pump fluence.
In their scenario, the non-thermalized high-energy electrons and holes evolved
into independent quasi-thermalized hot-carrier distributions with their own T,
and chemical potentials through intraband scattering, and hot-carrier injection
occurred within tens of fs prior to electron-hole interband coalescence and
thermalization.'””

Recently, hot-carrier injection in the same heterostructure was investigated by
optical-pump THz-probe (OPTP) spectroscopy.”® In OPTP measurements, an ul-
trashort fs laser with tunable photon energy selectively excites the graphene layer
or the heterostructure, and a time-delayed THz pulse characterizes the photocon-
ductivity. The graphene layer dominates the photoconductivity due to its large
charge mobility.'”®> As shown in Figure 6E, below-band-gap photoexcitation
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Figure 6. Hot-carrier transfer in a graphene-WS, vdWH (A and B) Schematics showing hot-electron transfer from graphene (A) before and (B) after thermalization. (C) TR trace at WS,
A-exciton bleaching following 1.6 eV photoexcitation. (D) Fluence-dependent TR intensity at different photon energies. (E) Fluence-dependent CT dynamics following 1.38 eV
photoexcitation. (F) Fluence-dependent photoconductivity at different photon energies. (G) Photon-energy-dependent power index obtained by different methods. Q’D Quantification

of photon-energy-dependent CT efficiency. g) Normalized fluence-dependent TR intensity at different photon energies. (C and D) Reproduced with permission. '’
2% Copyright 2021, AAAS. (1) Reproduced with permission.®” Copyright 2022, Springer Nature.

AAAS. (E-H) Reproduced with permission.

yields a transient reduction in conductivity, i.e., a negative photoconductivity. The
effect has been widely reported in graphene away from the Dirac point and is
associated with hot carriers having lower mobility than cold ones.''?* 2" Strik-
ingly, the transient photoconductivity was found to undergo a sign change within
10 ps after photoexcitation, showing a long-lived positive photoconductivity. This
was attributed to the downward shift of Er of the initially p-doped graphene
following hot-electron injection into WS,. By relating the fluence-dependent pos-
itive photoconductivity to the photon energy, an intriguing transition in the CT
mechanism was noticed (Figures 6F—6H): for below-band-gap excitations, the
CT-induced photoconductivity exhibited a superlinear relationship with the
pump fluence, indicating that thermalized hot electrons with sufficiently high en-
ergy could be injected to WS, via photo-thermionic emission with relatively low
efficiency (~1%). For above-band-gap excitations, the CT-induced photoconduc-
tivity was shown to scale linearly with the pump fluence. This effect was attrib-
uted to direct hole transfer from the WS, valence band to graphene with a rela-
tively high efficiency (~5%). A subsequent TR study® reproduced the revealed
dependence of photon energy on the exciton photobleaching signal (Figure 6I).
Benefiting from the high temporal resolution, the sub-20 fs rise observed in the
TR kinetics sets the ultimate timescale for thermalized hot-electron transfer.
Furthermore, an alternative scenario for the observed exciton photobleaching
signal following below-band-gap excitations involved the direct excitation of inter-
layer CT transitions. As proposed by Yuan et al.,’® this scenario relies on mo-
mentum-allowed direct transitions, thereby requiring a minimum photon energy
of ~1 eV. Although theoretically possible, this scenario alone failed to explain the
CT phenomena observed at sub-1 eV photon excitations.''®

Overall, despite the demonstration of hot-carrier injection, whether it occurs
before or after thermalization remains controversial. One possible origin of this

Copyright 2019,

controversy is sample differences in interfacial coupling strength, homogeneity,
doping, and twist angle, all of which may contribute to the competition between
thermalization and hot-carrier injection. Further studies incorporating ultimate
spatial, temporal, and spectral resolution and control variables may clarify this
controversy.

The role of defects in interfacial charge separation lifetime

Following CT, charge carriers with opposite signs reside in different layers,
forming a transient charge-separated state whose lifetime is critical for photoca-
talysis and photodetectors.?'2¢~ 190

Jnawali et al.”® used OPTP spectroscopy to examine interfacial dynamics in
graphene-Ceq VdWHSs. They showed that graphene-Cgo vdWHSs exhibited positive
photoconductivity with a lifetime of ~100 ps (Figure 7A), associated with photo-
induced hole transfer from Cgq to the initially p-doped graphene. The long-lived
nature of interfacial charge separation was rationalized by the presence of in-
gap defect states, which rapidly trap the remaining electrons in Cgq following
photo-induced hole transfer from Ceq to graphene (Figure 7B), in Cgo due to its
exposure to oxygen.'?'¥? The localized nature of the defect state reduces the
interfacial recombination probability, prolonging the interfacial charge separation
lifetime.

Our recent study also elucidated the role of defects in interfacial charge
separation in graphene-WS, vdWHSs by complementarily measuring the ultrafast
photoconductivity in graphene (Figure 7C) and the excited-state dynamics in
WS, (Figure 7D). While transient absorption (TA) reported a short excited-state
lifetime (~1 ps; Figure 7E) in WS,, OPTP showed long-lived photoconductivity
(over 1 ns; Figure 7F). The discrepancy between the carrier lifetimes in the elec-
tron donor (graphene) and acceptor (WS,) can be rationalized by the presence of

23,111
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ductivity dynamics following 1.55 eV photoexcitation. (A and B) Reproduced with permission.’® Copyright 2015, American Chemical Society. (C—F) Reproduced with permission.

Copyright 2021, AAAS.

defect states. These defect states can capture injected electrons in WS, within
1 ps and store them further for ~1 ns before recombining with photogenerated
holes in graphene. This leads to a long-lived photogating effect in graphene,
contributing to the ultrahigh photoconductive gain in high-performance photode-
tectors.”® %8 Recent scanning tunneling microscopy studies and ab initio theoret-
ical calculations indicated that sulfur vacancies in WS, could generate two unoc-
cupied in-gap electronic states, *>'** which are very likely the origin of the defect
states leading to the observed long-lived interfacial charge separation.

Overall, these results revealed the bright side of defects: although they are
generally considered detrimental to electronic devices, they can benefit optoelec-
tronic applications by extending the charge separation time and inducing photo-
gating effects once properly controlled. This promising prospect inspires the
microscopic understanding of defect origins and the management of defect
types and densities through defect engineering.

Understanding the interfacial electric field direction

Animportant consequence of CT is the generation of an interfacial electric field
directed between components. Understanding the direction of the interfacial
electric field not only has fundamental research implications but also paves
the way for designing novel optoelectronic functionalities.

Following CT, interfacial electric fields with opposite directions (i.e., directed
from/to graphene) were recently reported in different graphene-based
vdWHSs.?*"** Employing helicity-resolved TA spectroscopy, Zhou et al.® found
that the band offset for electron/hole transfer (AE./AE;) played an important
role in determining the interfacial electric field direction, due to the linear relation-
ship between AE, /AE}, and the density of states available for accepting electrons/
holes in graphene. For graphene-WS, vdWHSs, where AE,>AE,, photo-induced
hole transfer from WS, to graphene was found to be much faster than electron
transfer (210 fs versus 1.43 ps), resulting in a transient interfacial electric field
directed from graphene to WS, (Figures 8A and 8B). In contrast, for graphene-
WSe, vdWHs, where AE.>AFE;,, photogenerated electrons showed a higher CT
rate from WSe;, to graphene than holes (150 fs versus 2.28 ps), leading to a tran-
sient interfacial electric field directed from WSe; to graphene (Figures 8C and 8D).

Furthermore, Zhang et al.”” demonstrated an optical switching of the interfa-
cial charge flow direction in graphene-Cs,AgBiBre vdWHs by adjusting the

23

photon energy. As shown in Figures 8E—8H, above-band-gap photoexcitation
yielded CT-induced positive photoconductivity that scaled sub-linearly with the
pump fluence, which could be attributed to the transfer of photogenerated holes
from Cs,AgBiBrg to graphene. Below-band-gap photoexcitation led to CT-
induced negative photoconductivity that was linearly dependent on the pump flu-
ence, suggesting that the dominant CT mechanism was related to the direct
transfer of high-energy holes from graphene to the in-gap defect states in
Cs,AgBIiBrg. The revealed photon-energy-dependent CT mechanism allowed
modulation of the interfacial charge flow direction, providing an all-optical way
to tune photogating fields that are highly relevant for photodetection.

CONTROLLING ULTRAFAST CHARGE FLOW ACROSS
GRAPHENE-SEMICONDUCTOR vdW INTERFACES

Tracking and understanding the mechanisms, directions, and pathways of
charge/energy flow inspires further exploration of their determining parameters,
aiming to guide the design and operation of advanced optoelectronic devices.
Below, we summarize recent spectroscopic efforts to explore the control knobs
that modulate charge/energy flow in graphene-semiconductor vdWHs, including
vdW interactions and defect modulation.

Tuning vdW interactions

The interfacial coupling strength governed by vdW interactions plays a key role
in determining CT efficiency. Thanks to the strong interfacial -7 interactions, the
hybridization of graphene and its nanoscale segment nanographene (NG) is
considered a promising strategy to construct vdWHSs with tunable vdW interac-
tions and band alignment. As shown in Figure 94, Gobre et al.'*° showed that
vdW interactions in various carbon-based systems are characterized by peculiar
scaling laws, depending on the dimensionality and size of the system. Inspired by
this, Yu et al.”® investigated NG-size-dependent CT dynamics in graphene-NG in-
terfaces using OPTP spectroscopy. By increasing the size of NG, the interfacial
coupling strength between NG and graphene is expected to greatly increase,
even though the interfacial energy difference driving the CT process is unfavor-
ably reduced (Figure 9B). As shown in Figures 9C—9E, remarkably, the CT effi-
ciency was shown to increase by an order of magnitude when the size of NG
in the polyaromatic core is increased from 42 to 96 carbon atoms, thanks to
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Figure 8. Interfacial charge flow direction (A and B) Population and polarization kinetics of a graphene-WS, vdWH following 2.05 eV photoexcitation (A) and corresponding
asynchronous CT schematic (B). (C and D) Population and polarization kinetics of graphene-WSe, vdWHs following 1.72 eV photoexcitation (C) and corresponding asynchronous CT

schematic (D). (E and F) Fluence-dependent photoconductivity dynamics following (E) 1

.55 eV and (F) 3.10 photoexcitation. (G and H) Photon-energy-dependent photoconductivity

dynamics and intensity comparison. (A—D) Reproduced with permission.®® Copyright 2021, AAAS. (E-H) Reproduced with permission. Copyright 2023, Wiley.””

the greatly enhanced interfacial coupling strength. These findings provided in-
sights into designing all-carbon-based vdWHs containing graphene and large-
sized NGs for efficient, low-toxicity photodetection.?®

Defect control

As discussed, recent studies revealed that defects play a key role in deter-
mining the charge separation lifetime in graphene-semiconductor vdWHs.**' "
In particular, sulfur vacancies have been reported to introduce two in-gap defect

A

states with a typical density of 10°=10" cm=2."%"'% As such, modulating defect
occupancy is expected to be an effective strategy to control interfacial charge
flow. For that, a recent study’® investigated interfacial CT dynamics in gra-
phene-WS, vdWHs while tuning the charge filling of defect states by operando
OPTP measurements (Figure 10A). Figure 10B exhibits the photoconductivity dy-
namics operating at different gate voltages following below-gap photoexcitation.
The CT-induced photoconductivity and resulting local photogating field demon-
strated non-trivial dependence on gate voltage (Figure 10C). Notably, the local
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photogating mechanisms in (D) p-doped and (7E)
top layer. (A—E) Reproduced with permission.””

photogating field was found to switch from electron photogating (e.g., with long-
lived positive photoconductivity) when the defect states were empty to hole pho-
togating (e.g., with long-lived negative photoconductivity) when the defect states
were filled. The observed electrically tunable photogating dynamics were well re-
produced by simulating CT via photo-thermionic emission and involving two in-
gap defects as donors or acceptors for CT (depending on occupancy): in p-doped
heterostructures with unoccupied defect states, photo-induced electron injection
or trapping into defects in WS, governed the photogating mechanism, leading to
an electron photogating effect (Figure 10D); in n-doped heterostructures with
occupied defect states, photogenerated holes were injected into defects, result-
ing in a hole photogating scheme (Figure 10E).

Apart from exploiting the intrinsic defect states originating from building
blocks, the introduction of extrinsic defect states has also been shown to affect
interfacial relaxation pathways. For example, Liu et al.”" manipulated the nature
of the charge flow injected into graphene by jointly exploiting defect states in
h-BN spacers and the stacking tunability of graphene-h-BN-WS, vdWHSs. They
found that, in the absence of the WS, top layer, photoexcitation triggers the
ground-to-excited-state transition of defect states in h-BN and results in a net
electron injection into graphene, raising Er in graphene up to ~120 meV (Fig-
ure 10F), while in the presence of the WS, top layer, photo-induced hole relaxation
from WS, to h-BN to graphene is enabled (Figure 10G). Such cascaded hole
transfer neutralizes the electron injection from h-BN defect states to graphene,
making graphene an energy acceptor with negligible net charge accumulation.

PERSPECTIVES
Defect engineering

Although the critical role of defects in determining charge separation and the
photogating mechanism has been well demonstrated,”*’""® the precise charac-
terization and control of defect type and density remain challenging since they
are often sample specific and strongly influenced by synthesis history. Further
engineering of the defect type (e.g, by 0?" plasma treatment'*®) and density
(e.g., by electron beam irradiation'“® or chemical healing'*") is necessary to acti-
vate the full potential of defects in optimizing application performance. Further-
more, controlling defect occupancy or chemical potential using electrostatic or
electrochemical gating'*>'*® provides an alternative control knob for the
strength and direction of the interfacial electric field.

n-doped graphene-WS, vdWHs. (F and G) Schematics showing the interfacial relaxation pathways without (F) and with (G) the WS,
Copyright 2023, ACS Chemical Society. (F and G) Reproduced with permission.”’ Copyright 2020, ACS Chemical Society.

Organic-inorganic 2D vdW interfaces

Compared to the widely explored graphene-inorganic vdWHs, the field of gra-
phene-organic vdWHSs remains less studied, despite its potential. In particular, the
infinite tunability of chemical structures and the solution processability of organic
materials make graphene-organic vdWHs promising for large-scale and low-cost
device integration.'** One major challenge hindering the development of gra-
phene-organic vdWHs lies in the difficulty of achieving homogeneous and
compact deposition/growth of long-range-ordered organic structures on gra-
phene, which is essential for forming strongly coupled heterostructures. Recent
progress in synthesizing high-quality crystalline organic structures, such as cova-
lent organic frameworks (COFs) and metal-organic frameworks (MOFs), offers
promising avenues for overcoming this barrier.'“® For instance, Han et al.'*
recently demonstrated a CF3COOH/CF3CH,NH, protocol that enabled the rapid
growth of single-crystal COFs with crystal sizes of up to 150 pm. Wang et al.'*’
synthesized monolayer CusBHT with pm?2-scale uniformity and atomic flatness
using on-water surface chemistry. The assembled graphene-CusBHT vdWHs ex-
hibited efficient photo-induced interlayer charge separation, achieving a net elec-
tron transfer efficiency of up to 34% from CusBHT to graphene. Liu et al."*® devel-
oped an on-liquid-gallium surface synthesis strategy under chemical vapor
deposition (CVD) conditions, where the high adhesion energy between gallium
and planar aromatic ligands promoted the layer-by-layer growth of ultra-smooth
MOF films with a surface roughness as low as ~2 A. These rapid advances in
controlling the crystal size, layer number, and surface roughness of 2D crystalline
organic structures, combined with the vast molecular design space, pave the way
for engineering interface energetics, tuning interfacial charge and energy flow,
and device integration. Future efforts should prioritize the development of new
graphene-organic vdWHs and establish universal methods for fabricating high-
quality graphene-organic vdWHs. These advances will make it possible to explore
new interfacial phenomena that are inaccessible with inorganic counterparts.

Graphene-Janus TMDC heterostructures

In 2017, Lu et al."*® synthesized the first Janus TMDC, MoSSe, using a two-
step CVD process. In the synthesis, the authors used remote H, plasma to strip
off the top-layer S atoms in MoS,, followed by thermal selenization to replace H
atoms with Se atoms. The resulting symmetry breaking in the out-of-plane direc-
tion induces an intrinsic vertical piezoelectric response and a large Rashba
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spin-orbit interaction, which are relevant for nanoelectromechanical devices and
spintronics, respectively. On this basis, Liu et al.'®® proposed that the intrinsic
built-in electric field within the monolayer Janus TMDC, originating from the dif-
ference in electronegativity between S and Se, leads to an asymmetry potential
when sandwiched by two graphene layers. This asymmetry potential enables the
efficient and spontaneous separation of photogenerated electrons and holes into
different graphene layers on the timescale of hundreds of fs upon light absorp-
tion. Using first-principles density functional theory (DFT) calculations and ab
initio nonadiabatic molecular dynamics simulations, they demonstrated that
photogenerated electrons (holes) can be transferred from monolayer MoSSe
(MoSeTe) to the graphene layer on the Se side with a lower (higher) potential,
while the transfer of the photogenerated holes (electrons) is inhibited due to
the significant separation between the donor and acceptor states. These hypoth-
eses call for future experimental work using ultrafast spectroscopies to verify
these concepts and for device engineering to exploit the potential of Janus het-
erostructures for, e.g, light-sensing applications.

Spin injection

Graphene-based vdWHs also provide a new platform for exploring opto-spin-
tronics.'®' Because of its high mobility, weak spin-orbit coupling (SOC), and min-
imal hyperfine interactions, graphene has been recognized as a promising
material in spintronics, characterized by long spin lifetimes and relaxation
lengths.'**'%* However, its application in opto-spintronics is limited by the
absence of spin-dependent optical selection rules. One approach to overcome
this limitation is to combine graphene with 2D semiconductors that possess
strong SOC to form vdWHSs. Growing evidence suggests that TMDCs with excep-
tional spin-valley coupling are promising candidates for spin injection into gra-
phene when excited with circularly polarized light.?**® This not only mitigates
the issue of contact conductance mismatch but also introduces new mecha-
nisms to control spin injection.°® Besides, the stacking orders and twisting of
adjacent layers can provide further means to manipulate spin injection and
spin transport. Another attractive vdW system for spin injection is intrinsic 2D
magnets, such as semiconducting Crl; and metallic Fe;GeTe,.'** The prox-
imity-induced exchange effect between graphene and these 2D magnetic
materials opens up rich possibilities for engineering novel functionalities in
(opto-)spintronics. While light-induced spin transfer promises ultrafast control
of data recording and processing with least-dissipative power consumption,
further efforts are needed to explore these systems' ultrafast spin transfer dy-
namics to fully unveil their potential.

CONCLUSION

In conclusion, this review summarizes recent advances in understanding and
controlling ultrafast CT/ET phenomena in graphene-semiconductor vdWHs and
discusses their potential implications for optoelectronic applications. Various ul-
trafast spectroscopies, each with distinct sensitivities to CT and ET, provide
different perspectives on how charge or energy flow traverses the graphene-semi-
conductor interface and how the interfacial separation state is reset over longer
timescales. Growing evidence indicates that CT and ET are competing ultrafast
interfacial relaxation channels occurring on timescales of tens to hundreds of
fs, with their competition influenced by photoexcitation conditions (i.e., pump flu-
ence and wavelength). By collecting recent studies, this review comes up with
three intriguing topics that are particularly critical to device performance: the
mechanism of hot-carrier injection, the beneficial role of defects in extending inter-
facial charge separation, and the direction of CT-induced interfacial electric fields.
We hope these insights inspire further ultrafast spectroscopic studies to address
existing controversies. Furthermore, we propose a rudimentary toolkit—encom-
passing vdW interactions and defect engineering—to modulate charge and en-
ergy flow in graphene-semiconductor vdWHSs, providing foundational guidance
for designing high-performance optoelectronic devices. Finally, we expect that
forthcoming breakthroughs in this field will emerge from collaborative efforts of
materials science, ultrafast spectroscopy, and device integration to design novel
vdWHs and explore fascinating interfacial phenomena.
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